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Dispersion and dissipation properties of the 1D spectral
volume method and application to a p-multigrid algorithm

Kris Van den Abeele *,1, Tim Broeckhoven 1, Chris Lacor

Vrije Universiteit Brussel, Department of Mechanical Engineering, Fluid Dynamics and Thermodynamics Research Group,

Pleinlaan 2, 1050 Brussel, Belgium

Received 14 June 2006; received in revised form 22 September 2006; accepted 12 October 2006
Available online 28 November 2006
Abstract

In this article, the wave propagation properties of the 1D spectral volume method are studied through analysis of the
Fourier footprint of the schemes. A p-multigrid algorithm for the spectral volume method is implemented. Restriction and
prolongation operators are discussed and the efficiency of the smoothing operators is analyzed. The results are verified for
simple 1D advection problems and for a quasi-1D Euler flow. It is shown that a significant decrease in computational effort
is possible with the p-multigrid algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The spectral volume method was developed in a series of papers by Wang et al. [1–4], for the solution of
general two-dimensional hyperbolic systems like the Euler equations and on unstructured triangular meshes.
Recently, Liu et al. [5] extended the method to general three-dimensional hyperbolic systems on unstructured
tetrahedral meshes and Sun et al. [6] implemented the method for the Navier–Stokes equations. The spectral
volume method can be interpreted as a finite volume method, where within each spectral volume (SV) cell a
miniature structured mesh of control volumes (CVs) is formed. In this way a unique stencil for the flux is
defined for each face, eliminating the need for searching operations, which are needed in traditional high-order
(>2) finite volume methods on unstructured grids. Alternatively, the method can be interpreted as a Petrov–
Galerkin method. The weighting functions then correspond to Heaviside-like functions, which are equal to
one within one CV and zero everywhere else in the SV. The trial functions are chosen such that they have
an average value equal to one in one CV and average values of zero in the other CVs. The method enjoys many
of the advantageous properties of the discontinuous Galerkin method. It is capable of achieving arbitrarily
high orders of accuracy on unstructured grids. It also has a compact stencil, since a SV only communicates
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with its immediate neighbours, through the use of Riemann fluxes, which makes the method suited for parallel
computations. The representation of the solution within a SV, by averages over the CVs, allows for a limiting
procedure on a control volume level. This gives the SV method a higher resolution for shocks than the discon-
tinuous Galerkin method.

In previous work [2,3,5], the Lebesgue constant, which is basically a measure for the quality of the polyno-
mial interpolation, was used to develop SV partitions. In this paper, the dispersive and dissipative errors of the
schemes, which are very important for applications such as Computational Aeroacoustics (CAA) and Large
Eddy Simulation (LES), will be used to analyze the performance of the SV partitions. Such analysis is widely
used for finite difference and finite volume methods, and Hu et al. [9] performed it for the discontinuous Galer-
kin method.

With high-order methods, it is possible to achieve low error levels more efficiently than with traditional
first-order and second-order accurate schemes. However, efficient solution methods are necessary to fully ful-
fill this potential. Multigrid algorithms are by far the best candidate for this purpose. Traditional h-multigrid is
nowadays a standard tool for CFD-applications. In the last few years, p-multigrid algorithms for discontin-
uous Galerkin methods have been investigated and successfully implemented by Helenbrook et al. [12], Bassi
and Rebay [13] and Fidkowski et al. [14,15]. Important speed-ups in convergence were observed. In this paper,
a p-multigrid implementation for the SV method and adapted Runge–Kutta solvers for optimal smoothing
properties are presented.

The paper is organized as follows. Section 2 gives a brief description of the SV method. In Section 3, the
dispersive and dissipative properties of the SV method are analyzed through the Fourier footprint. The p-mul-
tigrid algorithm is then described in Section 4. In Section 5, the Fourier footprints are used to investigate the
efficiency of the smoothing operators for the multigrid algorithm. Numerical results are presented in Section 6.
Finally, conclusions are drawn in Section 7.

2. The spectral volume method

The spectral volume method can be applied to hyperbolic conservation laws (1)
oU
ot
þ ~r �~F ðUÞ ¼ SðUÞ ð1Þ
The computational domain V is divided in NSV spectral volumes (SV) Vi with volume jVij. Each of these SVs
Vi is further subdivided into control volumes (CV) Vi,j. Integrating (1) over such a CV and applying the Gauss
theorem gives
oUi;j

ot
jV i;jj ¼ �

Z
oV i;j

~F � d~sþ
Z

V i;j

S dV ¼ Ri;j ð2Þ
where jVi,jj is the volume of Vi,j, Ri,j is the residual corresponding to Vi,j and Ui;j is the CV average defined by
Ui;j �
1

jV i;jj

Z
V i;j

U dV ð3Þ
On a spectral element Vi, a polynomial approximation of the solution is defined
UV i � uV i �
XNiðp;dÞ

j¼1

U i;jLi;j ð4Þ
Ni(p,d) is the number of CVs in the SV Vi, depending on the desired degree of the polynomial approximation p

and the number of spatial dimensions d. The polynomials Li,j associated to the CVs Vi,j are defined by
1

jV i;jj

Z
V i;j

Li;m dV ¼ djm ð5Þ
where djm is the Kronecker delta function. Eq. (5) ensures the following property of the polynomial
approximation
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1

jV i;jj

Z
V i;j

uV i dV ¼ U i;j ð6Þ
With the polynomial approximation uV i , the flux integral and the source term integral in (2) can be approx-
imated to order p + 1, using Gauss quadrature. On the boundary between two SVs however, there are two
available values for the flux ~F , one from within each SV. Thus on these boundaries a suitable Riemann flux
~F R, for instance a Lax-Friedrichs flux, must be used. A more elaborate overview of the SV method can be
found in [1–6].

3. Wave propagation properties

In this section, the dispersive and dissipative properties of the spatial discretization of the SV method will
be analyzed. The approach followed is completely analogous to the one in Hu et al. [9]. It will be applied here
only for a 1D SV method, but the methodology can easily be extended to a 2D or a 3D SV method. A related,
Fourier type analysis to investigate accuracy and the stability has been carried out by Zhang et al. [8]. Con-
sider the 1D scalar advection equation on a domain with periodic boundary conditions and with a harmonic
wave as initial solution.
ov
ot
þ a

ov
ox
¼ 0 ð7Þ

vðx; 0Þ ¼ eIkx ð8Þ
To (7), a (p + 1)th order accurate SV method is applied, on a uniform mesh with cell size Dx. On each SV, a
local coordinate n is defined, with n 2 [�1,1]. The polynomial approximation vi ¼

Ppþ1
j¼1�vi;jLj on the SV with

index i can then be written as a function of n. The boundaries of the CVs are also defined by the corresponding
value of n: n0 = �1, . . . ,nq, . . . ,np+1 = 1. On the boundary between two SVs, a Riemann flux of the following
form is used:
F Rðvið1Þ; viþ1ð�1ÞÞ ¼ a
1þ a

2
við1Þ þ

1� a
2

viþ1ð�1Þ
� �

ð9Þ
In (9), a is an upwinding parameter. a = 0 corresponds to a central flux, a = 1 to a simple upwind flux. Eq. (7)
then becomes:
Dx
Xpþ1

j¼1

Qmj

d�vi;j

dt
þ a

Xpþ1

j¼1

N�1
mj �vi�1;j þ a

Xpþ1

j¼1

N 0
mj�vi;j þ a

Xpþ1

j¼1

N 1
mj�viþ1;j ¼ 0; m ¼ 1; . . . ; p þ 1 ð10Þ
The matrix elements Qmj is defined by
Qmj ¼
Dxj

Dx
dmj; m ¼ 1; . . . ; p þ 1 and j ¼ 1; . . . ; p þ 1 ð11Þ
where Dxj is the size of the CV with index j within a SV. The matrix elements N�1
mj , N 0

mj and Nþ1
mj are given by the

following expressions:
N�1
mj ¼

� 1þa
2

Lj 1ð Þ m ¼ 1

0 m ¼ 2; . . . ; p þ 1

�
ð12Þ

N 0
mj ¼

� 1�a
2

Ljð�1Þ þ Ljðn1Þ m ¼ 1

�Ljðnm�1Þ þ LjðnmÞ m ¼ 2; . . . ; p

�Ljðnp�1Þ þ 1þa
2

Lj 1ð Þ m ¼ p þ 1

8><>: ð13Þ

Nþ1
mj ¼

0 m ¼ 1; . . . ; p
1�a

2
Lj �1ð Þ m ¼ p þ 1

�
ð14Þ
Substitution of the following expression of a harmonic wave
�vi;jðtÞ ¼ ~vje
IðkiDx�xtÞ ð15Þ
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into (10) yields
Xpþ1

j¼1

ð�IeXQmj þ e�IKN�1
mj þ N 0

mj þ eIKNþ1
mj Þ~vj ¼ 0; m ¼ 1; . . . ; p þ 1 ð16Þ
with K = kDx the non-dimensional wave number and eX ¼ xDx=a the non-dimensional numerical frequency.
(16) is a system of p + 1 equations in the coefficients ~vj, which has a solution different from zero only if the
determinant of the matrix in the left hand side is equal to zero. This yields the numerical dispersion relation
detð�IeXQþ e�IKN�1 þN0 þ eIKNþ1Þ ¼ 0 ð17Þ

from which eX can be found. eX should be compared to the exact dispersion relation X = K. Expression (17) has
p + 1 solutions, corresponding to the p + 1 eigenmodes of the numerical system. The quantity �IeX is the so-
called Fourier footprint R ¼ RRe þ IRIm of the spatial discretization. The imaginary part RIm is a measure of
the dispersive properties of the scheme, whereas the real part RRe reflects the diffusive behaviour. In order for
the scheme to be stable, RRe should be non-positive for all K.

Notice that with a SV scheme using a polynomial approximation of degree p, waves with non-dimensional
wave numbers K ranging from �(p + 1)p to (p + 1)p are captured, since there are p + 1 degrees of freedom per
cell. For classical finite volume (FV) methods, this range is �p 6 K 6 p, which corresponds to the one degree
of freedom per cell used by such methods. To make a fair comparison between the FV schemes and the SV
schemes, the plots for the SV method should be downscaled with a factor p + 1, to take into account the
higher number of degrees of freedom used by this method. It should also be noted that equation (17) is peri-
odic in K, with a period of 2p. As was pointed out in Helenbrook and Atkins [10], the p + 1 solutions of (17)
thus correspond to the wave numbers K + z2p, with z = �(p + 1),�p, . . . ,p � 1, p and K ranging from 0 to 2p.
Consequently, to get a clear picture of the wave propagation properties, each of the p + 1 solutions of (17) is
reassigned to the corresponding wave number when plotting the dispersive and diffusive properties of the
scheme.

Figs. 1 and 2 show RIm and RRe for the second-order SV scheme (p = 1), when an upwind Riemann flux is
used (a = 1 in (9)). For this scheme, K ranges from �2p to 2p. Naturally, the plots are symmetrical with
respect to K = 0 ðRReðKÞ ¼ RReð�KÞ and RImðKÞ ¼ �RImð�KÞÞ. It can be seen that the numerical scheme
is only accurate for small dimensionless wavenumbers (jKj < 1). For jKj > 1, both the dispersion and the dif-
fusion error start to increase significantly. Furthermore, since RRe is non-positive for all K, one can conclude
that the spatial scheme is stable.

In Figs. 3 and 4, the Fourier footprints of some upwind fourth-order SV schemes are plotted, along with the
Fourier footprint of the fourth-order discontinuous Galerkin (DG) scheme. Because of the symmetry, the
Fig. 1. Dispersion error of the second-order SV method, with upwind Riemann flux (a = 1).



Fig. 2. Diffusion error of the second-order SV method, with upwind Riemann flux (a = 1).

Fig. 3. Comparison of dispersion errors of some fourth-order accurate schemes, with upwind Riemann flux (a = 1).
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curves are only shown for positive values of the wave number K. For the SV schemes, the positions of the CV
boundaries within a SV are given by the following values of the local coordinate n : {�1,�d, 0,d, 1}. Four dif-
ferent values for d are considered. The first is d = 2/3, corresponding to the fourth-order SV scheme used in
Wang and Liu [2] which they found to be non-convergent for a 2D linear convection problem. They consid-
ered a 2D case however, using triangles as SVs. The second value is d = cos(p/4) � 0.7071, which corresponds
to a Gauss–Lobatto distribution of the CV boundaries. For the third scheme, d equals 0.8. This scheme is
included because of its nice dispersive and dissipative properties. Finally, d = tanh(l/2)/tanh(l) with
l = 2.6 is considered, resulting in d � 0.8713. The second and the fourth scheme were discussed in Wang
[1]. Table 1 lists the following squarely integrated errors over the wave number range 0 6 K 6 j, for j = 7.84.
Edisp ¼
Z j

0

ðRIm � KÞ2 dK ð18Þ

Ediff ¼
Z j

0

ðRReÞ2 dK ð19Þ



Table 1
Integrated errors for the fourth-order SV and DG schemes with upwind Riemann fluxes, for j = 7.84

Scheme Edisp Ediff

DG 0.887 1.698
SV (d = 2/3) 1.047 1.973
SV (d = 0.7071) 0.566 3.827
SV (d = 0.8000) 0.002 6.160
SV (d = 0.8713) 0.290 14.135

Fig. 4. Comparison of diffusion errors of some fourth-order accurate schemes, with upwind Riemann flux (a = 1).
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From Table 1, it can immediately be concluded that the diffusive errors dominate for the SV method with up-
wind Riemann fluxes, which is also the case for the DG method.

In Fig. 4, it can be seen that for the SV schemes corresponding to d = 2/3 and d = 0.7071, RRe is positive
over a certain range of K. Consequently, the amplitude of the waves in this range will grow exponentially in
time, meaning that the schemes are unstable, despite the fact that they have smaller squarely integrated dif-
fusion errors than the other two SV schemes. The fact that the scheme with d = 2/3 is unstable provides at
least an indication to why the equivalent 2D fourth-order scheme in Wang and Liu [2] showed a non-conver-
gent behaviour. With the scheme based on the Gauss–Lobatto distribution however, good results were
achieved in Wang [1] and in Wang and Liu [3], which seems to contradict the present result. However, the
instability of the scheme is very weak, so it takes a long time to develop. Furthermore, stability analysis shows
that the scheme is stable for a small range of CFL-numbers (0.1625 < CFL < 0.2275), when combined with the
third-order TVD Runge–Kutta scheme of Shu [17] for time marching, which was used in [1]. This will be
shown in Section 5. The third-order accurate SV scheme based on the Gauss–Lobatto distribution was found
to suffer from the same weak instability.

The curves in Fig. 4 corresponding to d = 0.8 and d = 0.8713 show that both these spatial schemes are sta-
ble. The dispersive properties of the first are significantly better than those of the latter, as can be seen in Fig. 3
and in Table 1. The first scheme is also less dissipative than the second. It can thus be concluded that the
scheme with d = 0.8 has the best wave propagation properties of the investigated schemes. The upwind scheme
with d = 0.8 will be denoted the SV4D08U-scheme in the remainder of the article.

Upon comparison of the dispersive and diffusive behaviour of the SV schemes with that of the discontin-
uous Galerkin scheme, it can be concluded that the latter is significantly less dissipative. The dispersive error
of the DG scheme is slightly larger than that of the SV scheme. However, since the diffusive errors dominate, a
smaller error can be expected with the discontinuous Galerkin scheme for a given cell size, as has been
reported in the literature [7,8]. However, one should not immediately draw the conclusion that the DG method
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is superior to the SV method. As will be shown in Section 5, the latter allows for larger time steps, because of
the smaller Fourier footprint. Also, at least in 1D, the evaluation of the residuals requires less CPU-time.

In Fig. 5, the dispersion errors of some fourth-order accurate SV schemes combined with a central Riemann
flux are plotted, along with the dispersion error of the fourth-order discontinuous Galerkin scheme with a cen-
tral flux. The diffusion error of these schemes is uniformely zero. The behaviour of the SV schemes is plotted
for values of d equal to 0.6380, 0.7071, 0.8 and 0.8713. The schemes corresponding to the last three values have
already been analyzed for an upwind Riemann flux. The scheme with d = 0.6380 is included here because it
has nice dispersive properties. The square of the dispersive errors integrated over the range 0 6 K 6 7.84
are included in Table 2.

Upon analysis of Fig. 5 and Table 2, it is immediately clear that, contrary to the case with an upwind Rie-
mann flux, good SV schemes are found for lower values of d, for instance 0.6380. However, below a certain
value of d, the resulting schemes are unstable. This is illustrated in Fig. 6, where the solutions of (17) in the
wave number range 0 6 K 6 4p have been plotted for the scheme with d = 0.6. Despite the use of a central
Riemann flux, a non-zero and positive diffusion error is found for this scheme.

The presence of the discontinuity in the curves should be noted. This means that the numerical group veloc-
ity oRIm=oK is not defined for certain wave numbers K, which limits the usefulness of these schemes. However,
the evolution of the dispersion error for varying d suggests that there exists one value of d for which the dis-
continuity disappears and which still yields a stable scheme. Unfortunately, it is not trivial to determine this
value.

If one compares the SV schemes with a central Riemann flux to those with an upwind Riemann flux, it can
be concluded that the range over which the Fourier footprint ðRÞRe þ IRIm follows the ideal value of IK clo-
sely does not vary significantly. The central schemes have the advantage of not introducing diffusion errors, as
opposed to the upwind schemes. However, their usefulness is limited in practice, as discussed above.
Fig. 5. Comparison of dispersion errors of some fourth-order accurate schemes, with central Riemann flux (a = 0).

Table 2
Integrated errors for the fourth-order SV and DG schemes with central Riemann fluxes, for j = 7.84

Scheme Edisp

DG 7.504
SV (d = 0.6380) 0.427
SV (d = 0.7071) 1.542
SV (d = 0.8000) 10.894
SV (d = 0.8713) 36.069



Fig. 6. Dispersion (left) and diffusion errors of the fourth-order accurate SV scheme with d = 0.6 and a central Riemann flux (a = 0).
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When compared with the discontinuous Galerkin scheme, it is seen that the SV scheme with d = 0.6380
yields a slightly smaller dispersive error for the low wave number range before the discontinuity. For wave
numbers beyond the discontinuity, the SV scheme has a significantly smaller dispersive error.

4. p-Multigrid algorithm

The main idea of a multigrid algorithm is based on the observation that error-smoothing operators are gen-
erally very efficient in eliminating high-frequency errors, but much less adequate for the low-frequency errors.
The multigrid strategy is to switch to a coarser representation of the solution, where the low-frequency errors
on the fine representation occur as high-frequency modes, which can thus be efficiently damped out. In the
traditional h-multigrid approach, this is done by switching to a coarser spatial grid. With a p-multigrid algo-
rithm, a high-order solution representation is transferred to a lower-order one. Such p-multigrid algorithms
have already been studied for high-order discontinuous Galerkin methods, see [12–15]. They have also been
applied to spectral element methods, Ronquist and Patera [11]. Interesting properties such as p-independent
convergence rates and locality of the transfer operators have been reported. The p-multigrid algorithm for a
SV method described in this section is largely based on the algorithm used by Fidkowski et al. [14,15]. A sim-
ple, two-level Full Approximation Scheme algorithm as proposed by Brandt [16] can be summarized in the
following way. To solve a fine level problem Rf ðUf Þ ¼ 0, perform the following operations:

� Perform m1 smoothing sweeps on the fine level: Uf  ðGf Þm1 Uf

� Transfer the state and the residual to the coarse level:
Uc
0  eI c

f Uf ; fc  RcðUf Þ � RcðUc
0Þ ¼ Ic

f Rf ðUf Þ � RcðUc
0Þ
� Solve the coarse level problem: RcðUcÞ ¼ fc

� Prolongate the coarse level error and correct the fine level state:
Uf  Uf þ If
c ðUc �Uc

0Þ

� Perform m2 smoothing sweeps on the fine level: Uf  ðGf Þm2 Uf

In this algorithm, Gf represents an arbitrary smoothing operator on the fine level. fc is the so-called forcing
function. The coarse level problem could again be solved using a FAS algorithm, and so on. In this way, one
arrives at a V-cycle. A further increase in efficiency can be achieved by initializing the solution on coarser lev-
els. In this way, a better initial solution is provided for the fine levels, which will also improve the robustness of
the method. This corresponds to a so-called Full Multgrid (FMG) algorithm. In the present work, the decision
on when to start solving a finer level problem is made in an analogous way as in Fidkowski et al. [14,15]. The
switch to a finer level is made when the L2 norm of the coarse level residuals is smaller than a factor gswitch

times the L2 norm of the fine level residual. Multigrid levels with p = 0, p = 1 and p = 3 are considered,
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corresponding to the following relation between pfine and pcoarse: (pfine + 1)/(pcoarse + 1) = 2, i.e. doubling the
order of accuracy with each higher multigrid level. This choice is made here because it implies that the resolved
wavenumber range is doubled with each multigrid level as well, as is the case usually for h-multigrid algo-
rithms. The high wavenumber range, which should be strongly damped, then corresponds to wavenumbers
K between Kmax/2 and Kmax, with Kmax the maximum wavenumber which is resolved on the considered mul-
tigrid level.

The prolongation ðIf
c Þ, state restriction ðeI c

f Þ and residual restriction ðIc
f Þ operator still have to be defined for

the SV method. In this work, these operators are chosen as follows (with omission of the SV index i):

� Prolongation operator: this operator can be chosen in the same way as for discontinuous Galerkin methods.
On the coarse as well as on the fine level, the solution within a SV is represented by a polynomialPNðp;dÞ

j¼1 U jLj. The coarse level polynomials Lc
j can be written as a function of the fine level polynomials Lf

m:
Lc
j ¼

XNf

m¼1

ajmLf
m; j ¼ 1; . . . ;Nc ð20Þ

Nc and Nf are the number of CVs within a SV on the coarse and fine level. By equating the fine level solu-
tion to the coarse level solution, the following expression for If

c is found: ðIf
c Þmj � ajm.

� State restriction operator: this operator can also be defined completely analogously as for discontinuous
Galerkin methods, by projecting the fine level solution onto the coarse level polynomial basis. This results
in the following definition for eI c

f : ðeI c
f Þmj ¼ ðP�1QÞmj. The matrices P and Q are defined by
P jm ¼
Z

V
Lc

jL
c
m dV ; j;m ¼ 1; . . . ;Nc ð21Þ

Qjm ¼
Z

V
Lc

jL
f
m dV ; j ¼ 1; . . . ;N c; m ¼ 1; . . . ;N f ð22Þ
� Residual restriction operator: for discontinuous Galerkin methods, a very simple formulation for this oper-
ator exists, which follows from the property that the residuals are a semilinear form in the basis functions.
However, this property is not valid for the SV method, so the residual restriction operator has to be defined
in another way. One could evaluate the coarse level residual of the fine level solution by simply using the
latter in the points that are used for the calculation of the coarse level residual. However, it is then not
immediately clear how to restrict a possible fine level forcing term ff. Such a term will occur if the consid-
ered fine level is not the highest multigrid level. One approach could be to divide the forcing term of a fine
level CV between the coarse level CVs which share part of their domain with it. Each coarse level CV would
then receive a part proportionate to the fraction of the fine level CV they occupy. In the present work how-
ever, only multigrid levels with p = 0, p = 1 and p = 3 are used. The distribution of CVs inside a 1D SV is
then such that two fine level CVs, with index j1 and j2, correspond exactly to one coarse level CV with index
j. The restricted residual is then calculated as
½Ic
f Rf ðUf Þ�j � Rc

jðUf Þ ¼ Rf
j1ðUf Þ þ Rf

j2ðUf Þ ð23Þ

The CV distributions for the different p-multigrid levels and the residual restriction operation are illustrated
in Fig. 7.

If another p-multigrid level, with p = 7, is to be added, then the corresponding SV should be designed in
such a way that one of the CV boundaries is n = �d and another is n = d. This is to ensure that the above
residual restriction operator can still be used. Notice that for the same reason, a residual restriction oper-
ator such as (23) cannot be used for 2D or 3D problems, when simplices are used as SVs. In this case the
coarse level CVs don’t correspond exactly to a certain number of fine level CVs, except for the restriction
from p = 1 to p = 0. A possible extension to the operator (23) for this case is to divide the fine level residual
proportionally between the coarse level CVs which share part of their domain with the fine level CV. When
quadrangles or hexahedrons are used, an operator of the type (23) could still be used. For such SVs, the
polynomial basis is not an order-complete basis, but a tensor product basis, which contains more basis
functions for a certain order of accuracy. This could be considered a drawback.



Fig. 7. Distribution of CVs within a 1D SV for a first, second and fourth-order method and illustration of the residual restriction process.
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5. Smoother efficiency analysis

The efficiency of a multigrid algorithm largely depends on the quality of the smoothing operators. These
should be designed in such a way that the high-frequency modes (K > Kmax/2) are damped effectively. A vari-
ety of smoothing operators are available, varying from explicit Runge–Kutta smoothers to implicit Jacobi,
Gauss–Seidel or other smoothers, with or without overrelaxation. In the present work, explicit NRK-stage
Runge–Kutta smoothers of the following form are considered:
U 0
i;j ¼ U n

i;j

Um
i;j ¼ C1

mU 0
i;j þ C2

mUm�1
i;j þ C3

m

Dt
jV i;jj

Rm�1
i;j ; 1 6 m 6 N RK

U nþ1
i;j ¼ U NRK

i;j

ð24Þ
To investigate the damping characteristics of such a Runge–Kutta smoother, a Fourier analysis is made, see
for example Ramboer et al. [19]. Consider the semi-discretization (10) of the 1D scalar linear advection equa-
tion, written in a more compact form
d�v

dt
¼ 1

Dx
Q�1Rð�vÞ ð25Þ
To fix thoughts, consider the simple Euler algorithm, which corresponds to (24) with NRK = 1, C1
1 ¼ 1, C2

1 ¼ 0
and C3

1 ¼ 1, to numerically integrate (25) in time. Then the following expression is obtained:
�vnþ1 ¼ �vn þ Dt
Dx

Q�1Rð�vnÞ ð26Þ
Substituting a Fourier mode solution of the form
vðx; tÞ ¼ F ðtÞeIkx; x ¼ iDx and t ¼ nDt ð27Þ

gives
GðrRðKÞÞ � F nþ1

F n ¼ 1þ rRðKÞ ð28Þ
where R is the Fourier footprint of the SV scheme, which was defined in Section 3. The CFL-number r is given
by aDt/Dx. The complex number GðrRðKÞÞ is the amplification factor of the fully discretized scheme. For a
general NRK-stage Runge–Kutta scheme, the amplification factor can be calculated in an analogous way. It
will then be a polynomial function of degree NRK in rR. jGj should not be larger than one for stability. In
the case of the exact solution in time, GðrRÞ corresponds to erR. Consequently, for a time accurate solution,
the amplification factor should be a good approximation of the exponential function, for wavenumbers K

ranging from 0 to Kres, where Kres is the maximum wavenumber which is still accurately resolved by the spatial
scheme. However, if one is only interested in the steady state solution, the Runge Kutta scheme is best chosen
such that the transient waves are damped out as quickly as possible. Practically, for the multigrid algorithm,
this means that jGðrRÞj should be small for high wavenumbers, since on each multigrid level only the high-
frequency waves should be strongly damped.

Fig. 8 shows the amplitude of the amplification factor for the standard four-stage fourth-order accurate
Runge–Kutta scheme as a function of rR. The spatial scheme defines a trajectory for R in the complex plane,



Fig. 8. Amplification factor amplitude jGj of the standard 4-stage fourth-order accurate RK scheme. Fourier footprints rR of the
SV4D08U-scheme with r = 0.21 (s) and the fourth-order upwind DG scheme with r = 0.21 (e) and with r = 0.145 (,).
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as a function of the wavenumber. This Fourier footprint, after scaling with r, should lie entirely inside the
domain where jGj < 1 for stability. In Fig. 8, the Fourier footprint has been plotted for the SV4D08U-scheme
with r = 0.21, along with the footprints of the fourth-order upwind discontinuous Galerkin scheme with
r = 0.21 and r = 0.145. It is clearly observed that the SV scheme will be stable for r = 0.21. The DG scheme
however is unstable for this value and requires a smaller CFL-number. For r = 0.145, the Fourier footprint of
the latter does lie entirely inside the stability domain. One can thus conclude that because of the generally lar-
ger unscaled Fourier footprint, the discontinuous Galerkin method requires smaller CFL-numbers than the
SV method, as was mentioned in Section 3. This result is in accordance with the literature [7,8].

We now come back to the stability of the upwind SV scheme with Gauss–Lobatto points. In Section 3 there
was an indication that this scheme is unstable because of a positive diffusion error. Fig. 9 shows the Fourier
footprint of this scheme for r = 0.2 and r = 0.125, plotted on the stability domain of the third-order TVD
Runge–Kutta scheme [17]. On the right figure it can clearly be seen that this footprint lies just outside the sta-
bility domain for r = 0.125. Consequently, the scheme is weakly unstable, as was shown in Section 3. For
r = 0.2 however, the scheme is stable.

The amplitudes of the amplification factors for two five-stage Runge–Kutta schemes (RK5) of the form (24)
are shown in Fig. 10. The left figure shows jGj for the standard scheme, which is fifth-order accurate in time for
linear problems, see for example Lacor et al., [18]. In the right figure, jGj is shown for a scheme with optimized
coefficients, such that better smoothing properties are obtained. For the high-frequency waves to be damped
efficiently, the corresponding part of the Fourier footprint should lie in a domain with small amplification fac-
tor. The Fourier footprint of the SV4D08U-scheme is shown in both figures, for r = 0.4. It is clear that the
Fig. 9. Amplification factor amplitude jGj of the third-order TVD RK scheme (left) and zoom on the area [�0.1,0.1] · [�1,1] (right).
Fourier footprint rR of the upwind SV scheme based on Gauss–Lobatto points, with r = 0.2 (s) and r = 0.125 (e).



Fig. 10. Amplification factor amplitude jGj of the standard RK5-scheme (left) and the optimized RK5-scheme (right). Fourier footprint
rR of the SV4D08U-scheme with r = 0.4 (s).

Table 3
Coefficients of the different Runge–Kutta schemes and CFL-limit in combination with the spatial schemes they are used with. Index m

takes the values 1, . . . ,NRK

Scheme C1
m C2

m C3
1 C3

2 C3
3 C3

4 C3
5 SV scheme rmax

std RK2 1 0 1
2 1 – – – SV1U 1

opt RK2 1 0 1
4 1 – – – SV1U 2

std RK3 1 0 1
3

1
2 1 – – SV2U 0.595

opt RK3 1 0 1
5

1
2 1 – – SV2U 0.820

std RK5 1 0 1
5

1
4

1
3

1
2 1 SV4D08U 0.245

m = 1: m = 1:
opt RK5 1 0 85

1300
1

10
9

50
1
4

132
300 SV4D08U 0.510

m 6¼ 1: m 6¼ 1:
1� C3

m C3
m
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standard Runge–Kutta scheme will be unstable for the chosen value of r. The optimized scheme is stable how-
ever, and a large part of the Fourier footprint lies in a zone with high damping. It is thus concluded that both
the stability domain jGj < 1 and the zones with high damping can be significantly enlarged by a suitable choice
of the Runge–Kutta scheme coefficients. The coefficients of the RK-schemes in Fig. 10 are included in Table 3,
along with the stability limit rmax when the SV4D08U-scheme is used. Also, the coefficients of a two-stage
(RK2) and a three-stage (RK3) RK scheme are given, with rmax when combined with the spatial scheme men-
tioned in the table. The SV1U- and SV2U-schemes are the first- and second-order accurate upwind SV
schemes respectively. The combinations of spatial schemes and optimized RK-schemes in Table 3 correspond
to the p-multigrid levels that will be used in the test cases in Section 6.
Fig. 11. Amplification factor amplitude jGj versus wavenumber K for the SV4D08U-scheme and the optimized five-stage RK scheme with
r = 0.4.



Fig. 12. Amplification factor amplitude jGj versus wavenumber K for the SV2U-scheme and the optimized RK3-scheme with r = 0.65
(left) and the SV1U-scheme and the optimized RK2-scheme with r = 1.2 (right).
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In order to see more clearly how much each wavenumber is damped, Fig. 11 shows the amplification factor
amplitude jGj as a function of the wavenumber K for the optimized RK5-scheme and the SV4D08U-scheme,
with r = 0.4. It can be seen that for K > Kmax/2, jGj is smaller than 0.5 and that for the biggest part of this
high-frequency range, jGj is smaller than 0.3. The high-frequency waves will thus be damped quite efficiently.
In Fig. 12, analogous plots are shown for the SV2U-scheme with the optimized RK3-scheme and r = 0.65,
and for the SV1U-scheme with the optimized RK2-scheme and r = 1.2. The same conclusion can be drawn.

6. Numerical tests

6.1. 1D linear advection

To verify the results on the wave propagation characteristics of the SV method, the linear advection of a
Gaussian profile is considered. The equation to be solved is (7), with a = 1, on the following computational
domain: 0 6 x 6 1. The initial solution is given by
Fig. 13
with d
vðx; 0Þ ¼ exp � x� 0:5

0:1

� �2
 !

ð29Þ
The cell size is Dx = 0.1, which is quite large, so that the dispersive and dissipative behaviour of the schemes
can be well observed. Time integration was performed with a four-stage fourth-order accurate Runge–Kutta
algorithm and a time step of Dt = 0.005, resulting in a CFL-number r = 0.05. The latter is sufficiently small to
ensure that the error is mainly due to the spatial discretization. A long integration time of 50 is chosen to
clearly distinguish the dissipation and the dispersion errors.
. Comparison of Gaussian profiles at t = 50 computed with the fourth-order DG scheme and with the fourth-order SV schemes
= 0.8 and d = 0.8713, using an upwind Riemann flux (a = 1).
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In Fig. 13, the profiles at t = 50 obtained with different upwind schemes are shown. At this time, the wave
has travelled through the domain fifty times. The figure clearly illustrates that the fourth-order SV scheme
with d = 0.8 is more accurate than the scheme with d = 0.8713. Also, the discontinuous Galerkin scheme pro-
duces a better result than either of the SV schemes. These results are in accordance with the analysis made in
Section 3.

The instability of the upwind scheme based on the Gauss–Lobatto points was also verified numerically,
with the third-order TVD Runge–Kutta scheme that was used in Wang [1]. The mesh size was set to
Dx = 0.01 and the CFL-number was r = 0.125. To illustrate the weakness of this instability, the solution is
plotted at t = 30 and at t = 45 in Fig. 14. Despite the fact that at t = 30, the wave has travelled through
the computational domain 30 times, there is no indication of any instability yet. However, at t = 45 the insta-
bility has clearly started developing. For r = 0.2, the computation was stable and for r = 0.25, it immediately
became unstable, which confirms the results found in Section 3.

Fig. 15 shows the advected waves at t = 50, obtained with different central schemes. As was predicted in
Section 3, the fourth-order SV scheme with d = 0.6380 performs significantly better than the other SV
schemes, and it slightly outperforms the discontinuous Galerkin scheme. When compared with Fig. 13, one
could conclude that the central schemes give better results than the upwind schemes. One should keep in mind
however that with these central schemes, the numerical group velocity is not defined for certain wave numbers.
Especially for non-linear problems, where energy can be transferred between wavenumbers, this could pose
problems. Consequently, the usefulness of these schemes is limited in practice.
Fig. 14. 1D advection of a Gaussian wave with the fourth-order upwind SV scheme based on the Gauss–Lobatto points, for CFL = 0.125.
t = 30 (left) and t = 45 (right).

Fig. 15. Comparison of Gaussian profiles at t = 50 computed with the fourth-order DG scheme and the fourth-order SV schemes with
d = 0.6380, d = 0.7071 and d = 0.8, using a central Riemann flux (a = 0).
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6.2. 1D linear advection with source term

To test the performance of the p-multigrid algorithm, the steady state solution of the following model prob-
lem is computed.
Table
Comp

Algori

FMG
FMG
FMG
FMG
FMG
FMG
SG
SG
ov
ot
þ ov

ox
¼ nxn�1 ð30Þ
on the domain 0 6 x 6 1, with v = 0 at the inflow. The steady state solution of (30) is
v ¼ xn ð31Þ

The steady state solution of (30) for n = 4 was computed with the SV4D08U-scheme, on a uniform mesh con-
taining 400 cells. A full p-multigrid algorithm combined with the optimized Runge–Kutta smoothers that were
discussed in Section 5 was used, starting from a uniformely zero initial solution. The selected values for the
CFL-numbers r are those which were determined in the previous section and which ensured an efficient damp-
ing of the high-frequency waves. The parameter gswitch, used to determine when to start computing on a finer
level, was set to 0.2. The same computation was done using the third-order accurate TVD RK scheme as a
smoother. The CFL-numbers for this case were determined in the same way as for the optimized RK-schemes,
to obtain an efficient damping of the high-frequency waves. As a comparison, two single grid computations on
the same mesh, using the optimized five-stage RK and the third-order TVD RK smoother respectively, were
performed. The parameters of these computations are summarized in Table 4, where m1 and m2 are the number
of sweeps in respectively the descending and the ascending part of a V-cycle.

Furthermore, the full p-multigrid computations were repeated on a non-uniform mesh with 400 cells. This
mesh was obtained by randomly perturbing the node positions of the uniform mesh, with a maximum devi-
ation of 25% of the uniform mesh cell size. A local time stepping technique was used on this perturbed mesh,
meaning that the time steps were chosen for each cell individually such that the local CFL-number corre-
sponded to the prescribed value. The single grid computations were also done on the perturbed mesh, but
the residual history was nearly indistinguishable from the computations on the uniform mesh.

Fig. 16 shows the residual history of these computations. Notice the little peaks in the curves corresponding
to the full multigrid computations, where the switch to a finer level is made. It is clearly observed that signif-
icantly less iterations are needed with the full multigrid algorithm than with the single grid algorithm, for both
the optimized RK and the TVD RK smoothers. For the full p-multigrid computations on the uniform mesh,
the optimized RK smoothers required 25% less V-cycles to converge than the TVD RK smoother. On the per-
turbed mesh, the number of V-cycles required by the optimized RK smoothers to converge the solution is the
same as on the uniform mesh. For the TVD RK smoother however, a significant increase in the number of
cycles needed for convergence was observed.

To make a fair comparison between the computations, the computational times should be considered, since
a single grid iteration takes much less time than a V-multigrid cycle. Furthermore, the smoother also has a
significant influence on the CPU-time needed to perform an iteration. The measured CPU-times on an Intel
Pentium CentrinoTM processor with a clockspeed of 1.73 GHz are included in Table 5. The V-cycles VMG1,
VMG2 and VMG3 are illustrated in Fig. 17.
4
utation parameters of the 1D linear advection model problem computation

thm p-MG level Spatial scheme Smoother CFL(r) m1 m2

3 SV4D08U Optimized RK5 0.40 2 2
2 SV2U Optimized RK3 0.65 3 3
1 SV1U Optimized RK2 1.20 16 –
3 SV4D08U TVD RK3 0.15 2 2
2 SV2U TVD RK3 0.40 3 3
1 SV1U TVD RK3 1.00 16 –
– SV4D08U Optimized RK5 0.40 1 –
– SV4D08U TVD RK3 0.15 1 –



Fig. 16. Residual history of the 1D linear advection model problem computation, using the full multigrid algorithm (left) and a single grid
algorithm (right).

Table 5
CPU-time (s) per cycle for the 1D linear advection model problem, on a mesh with 400 cells, for two different smoothers and for different
cycles

SG (p = 3) VMG1 VMG2 VMG3

Optimized RK 2.41 2.28 4.71 15.27
Third-order TVD RK 1.44 3.39 5.63 12.28

Measured on an Intel Pentium CentrinoTM processor with a clockspeed of 1.73 GHz. The programming was done in Matlab.

Fig. 17. Used V-cycles, with number of sweeps on each multigrid level.
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For the L2-norm of the residual to drop 11 orders of magnitude, 1652 single grid cycles with the optimized
RK smoother are needed, amounting to an estimated total CPU-time of 1652 · 2.41 s � 3981 s. With the full
multigrid algorithm and the optimized RK smoothers, 10 VMG1 cycles, 7 VMG2 cycles and 23 VMG3 cycles
are needed, resulting in an estimated total time of 10 · 2.28 s + 7 · 4.71 s + 23 · 15.27 s � 407 s for the com-
putation. The full multigrid algorithm thus required about 9.8 times less computational time than the single
grid algorithm. The total CPU-times for the other computations can be estimated in the same way, as sum-
marized in Table 6. From this table, it can be seen that although the optimized five-stage RK smoother needed
more time for the single grid computation than the TVD RK smoother, the optimized RK smoothers were
Table 6
Estimated total CPU-times for the residual L2-norm to drop 11 orders of magnitude, for the linear advection model problem

Computation #SG #VMG1 #VMG2 #VMG3 Total CPU-time

SG, unif mesh, opt RK 1652 – – – �3981 s
SG, unif mesh, TVD RK 2694 – – – �3879 s
FMG, unif mesh, opt RK – 10 7 23 �407 s
FMG, unif mesh, TVD RK – 12 9 32 �484 s
FMG, pert mesh, opt RK – 10 7 23 �407 s
FMG, pert mesh, TVD RK – 12 9 69 �939 s



Fig. 18. Residual L2-norm (left) and error L1-norm (right) history for the 1D linear advection model problem, using the full multigrid
algorithm, for a mesh containing 400 cells, with full convergence to 10�10 on each level.
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significantly faster for the multigrid computations. Especially for the full p-multigrid computation on the per-
turbed mesh, the optimized RK smoothers converged the solution in less than half the time needed by the
TVD RK smoother. It can thus be concluded that the optimized RK smoothers are more suited for the present
full p-multigrid algorithm for the SV method than the TVD RK scheme.

Some tests to investigate the dependence upon p and h were done as well. These tests are analogous to the
tests done in Fidkowski et al. [15]. Fig. 18 shows the residual history (left) and the error history (right) of a full
p-multigrid computation on the mesh containing 400 cells, where the residual was converged to 10�10 on each
level instead of using the residual based switching criterion. The average rate of convergence, which is indicated
in the figure, varies only slightly with increasing p. From the right figure one can conclude that, for the coarser
levels, truncation error accuracy is reached long before the residual is converged. This justifies the use of the
residual based switching criterion. On the finest multigrid level however, the error does not reach the truncation
error level before the residuals reach machine zero, for this computation. Fig. 19 shows the residual histories of
four full p-multigrid computations (left) and of four single grid computations (right), on meshes of different
sizes. It is clearly seen that for the full p-multigrid algorithm, the dependence upon h of the number of iterations
needed to achieve convergence is small for large h. For meshes with more cells, this dependence is more impor-
tant. However, from the right figure one can conclude that for the single grid algorithm, the required number of
iterations increases much faster with decreasing h.

6.3. Steady quasi-1D Euler flow through convergent nozzle

This test case is taken from Wang et al. [3]. The quasi-1D Euler equations are given by
Fig. 19. Residual history for the 1D linear advection model problem, for different meshes, using the full multigrid algorithm (left) and a
single grid algorithm (right).
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where the energy E is defined by
E ¼ 1

c� 1

p
q
þ 1

2
u2 ð33Þ
and the area of the convergent nozzle is given by
AðxÞ ¼ 1:5� 0:5 tanhðxÞ; �5 6 x 6 5 ð34Þ

The inflow and outflow conditions are
fqin; uin; ping ¼ f1:2949245; 0:30891936; 1:0256854g
fqout; uout; poutg ¼ f1; 0:8; 0:71428571g

ð35Þ
An analytical solution of this problem is available. The steady state solution of (32) was computed using the
SV scheme with d = 0.8 combined with a Flux Difference Splitting (FDS) Riemann flux, on both a uniform
and a non-uniform mesh with 100 cells. The non-uniform mesh was again obtained by randomly perturbing
the node positions of the uniform mesh, by a maximum amount of 25% of the uniform mesh cell size. A full p-
multigrid algorithm combined with the optimized RK smoothers was used, starting from an initial solution
which varies linearly between the inlet and the outlet conditions. To ensure an efficient damping, a local time
stepping technique was used. The time steps were determined using the following formula:
Dti ¼
2rDxi

ðjuj þ cÞn¼�1
i þ ðjuj þ cÞn¼1

i

; i ¼ 1; . . . ;NSV ð36Þ
where the CFL-number r has a prescribed value, which ensures an efficient damping of the high-frequency
waves. In (36), the maximum wave propagation speed in the SV with index i is estimated by the average of
the largest eigenvalues on the boundaries of the SV. The speed of sound c is defined by c2 = cp/q. The mul-
tigrid algorithm parameters are the same as for the first test case, except for the CFL-number at the finest mul-
tigrid level, which was set to 0.1. This smaller value was required there for the solution to converge rapidly.
The reason for this is probably that the smoothing efficiency analysis of Section 5 is not entirely valid any-
more, because an upwind Riemann flux was assumed for the calculation of the Fourier footprints (see Section
3) and for the present computation, a FDS flux is used. As a comparison, single grid computations were per-
formed on both meshes, using the optimized five-stage RK smoother with CFL-number r = 0.4. The residual
history of the single grid computation on the perturbed mesh was again hardly distinguishable from that of the
computation on the uniform mesh.

Fig. 20 shows the obtained residual histories. Again, significantly less iterations are needed with the full
multigrid algorithm than with the single grid algorithm. On the perturbed mesh, the algorithm needed only
a few iterations more to converge the solution than on the uniform mesh.

The measured CPU-times per iteration are listed in Table 7. For the L2-norm of all the residuals to drop 11
orders of magnitude, 4801 single grid cycles were needed, amounting to an estimated total CPU-time of
4801 · 1.47 s � 7057 s. With the full multigrid algorithm, 7 VMG1 cycles, 8 VMG2 cycles and 86 VMG3
cycles were needed, resulting in an estimated total time of 7 · 1.45 s + 8 · 3.05 s + 86 · 9.47 s � 849 s for
the computation. The time needed for the multigrid algorithm on the perturbed mesh is estimated in the same
way. These total times have been summarized in Table 8. It is seen that on the uniform grid, the full p-mul-
tigrid algorithm required about 8.3 times less CPU-time than the single grid algorithm, while on the perturbed
mesh, it was 7.8 times faster.

Fig. 21 shows the residual history (left) and the mass density error history (right) of a full p-multigrid com-
putation on the mesh containing 100 cells, where the residuals were converged to 10�10 on each level. For this
case, there is a more significant dependence of the convergence rate on p. The average convergence rate on the
level with p = 3 is just over half of the convergence rate on the level with p = 1. For this computation, the error
reaches the truncation error level before the residuals are converged, on each of the multigrid levels, which again



Table 7
CPU-time (s) per cycle for the quasi-1D Euler flow problem, on a mesh with 100 cells, for the optimized RK smoother and for different
cycles

SG (p = 3) VMG1 VMG2 VMG3

Optimized RK 1.47 1.45 3.05 9.47

Measured on an Intel Pentium CentrinoTM processor with a clockspeed of 1.73 GHz. The programming was done in Matlab.

Table 8
Estimated total CPU-times for the residual L2-norm to drop 11 orders of magnitude, for the quasi-1D Euler flow problem

Computation #SG #VMG1 #VMG2 #VMG3 Total CPU-time

SG, unif mesh, opt RK 4801 – – – �7057 s
FMG, unif mesh, opt RK – 7 8 86 �849 s
FMG, pert mesh, opt RK – 7 8 91 �896 s

Fig. 21. Residual L2-norm (left) and mass density error L1-norm (right) history for the quasi-1D Euler flow problem, using the full
multigrid algorithm, for a mesh containing 100 cells, with full convergence to 10�10 on each level.

Fig. 20. Residual history of the quasi-1D Euler flow computation, using the full multigrid algorithm (left) and a single grid algorithm
(right).
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justifies the use of the residual based switching criterion. Fig. 22 shows the residual histories of four full p-mul-
tigrid computations (left) and of four single grid computations (right), on meshes of different sizes. It is clearly
seen that for the full p-multigrid algorithm, the dependence on h of the number of iterations needed to achieve
convergence is very small. Only the computation on the finest mesh required slightly more iterations than the
computations on the coarser meshes. In the right figure one can see that the number of iterations needed by
the single grid algorithm with the optimized five-stage RK smoother does have an important h-dependence.



Fig. 22. Residual history for the quasi-1D Euler flow problem, for different meshes, using the full multigrid algorithm (left) and a single
grid algorithm (right).
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7. Conclusions

The wave propagation properties of the spectral volume method have been analyzed and the influence of
the partitioning into control volumes was studied. Based on this analysis, a 1D SV scheme with good wave
propagation properties was proposed. A comparison was made with the dispersion and dissipation properties
of the discontinuous Galerkin method. It was also shown that the third and fourth-order accurate SV schemes
based on the Gauss–Lobatto distributions are weakly unstable for the 1D linear advection equation, when
combined with a simple upwind flux. The results of this analysis have been numerically verified by the 1D lin-
ear advection of a Gaussian profile. It may be concluded that the dispersion and dissipation properties, which
also take into account the influence of the Riemann flux, are a better measure for the quality of the spectral
volume partitions than the Lebesgue number. Furthermore, a p-multigrid algorithm for the SV method was
implemented. A definition for the restriction and prolongation operators was formulated, based on the oper-
ator definitions for the discontinuous Galerkin method. Optimized explicit Runge–Kutta smoothing operators
were developed and their efficiency was analyzed. The p-multigrid algorithm was tested on a 1D linear advec-
tion equation with a source term and on the quasi-1D Euler flow through a convergent nozzle. In both cases, a
significant decrease in the necessary number of iterations and computational time was observed. Implementa-
tion of the p-multigrid algorithm for 2D is underway and will be reported in a future publication.
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